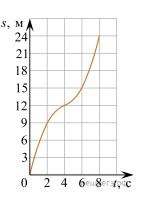
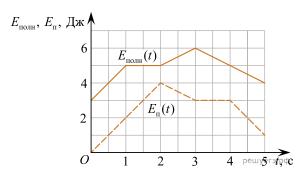
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

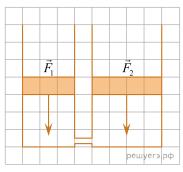
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Если в наборе дифракционных решёток имеются решётки с числом штрихов 50; 75; 100; 150; 200 на длине l=1 мм, то наибольший период d имеет решётка с числом штрихов:

2. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=20 км автомобиль проехал за промежуток времени Δt , равный:

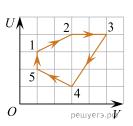


3. По параллельным участкам соседних железнодорожных путей навстречу друг другу равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=60~\frac{\mathrm{KM}}{\mathrm{q}}$, товарного – $\upsilon_2=48~\frac{\mathrm{KM}}{\mathrm{q}}$. Если длина товарного поезда $L=0,45~\mathrm{km}$, то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:


4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала отсчёта до момента времени t= 6 с тело прошло путь s = 15 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:

5. На рисунке сплошной линией показан график зависимости полной механической энергии $E_{\rm полн}$ тела от времени t, штриховой линией — график зависимости потенциальной энергии $E_{\rm п}$ тела от времени t. Кинетическая энергия $E_{\rm k}$ тела оставалась неизменной в течение промежутка времени:

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_2 = 64 H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:



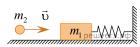
7. Число N_1 атомов лития $\left(M_1=7\frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_1=4$ г, N_2 атомов кремния $\left(M_2=28\frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_2=1$ г. Отношение $\frac{N_1}{N_2}$ равно:

1)
$$\frac{1}{16}$$
 2) $\frac{1}{4}$ 3) 1 4) 4 5) 16

8. При изотермическом сжатии давление идеального газа изменилось от p_1 = 0,15 МПа до p_2 = 0,18 МПа. Если конечный объем газа V_2 = 5,0 л, то начальный объем V_1 газа равен:

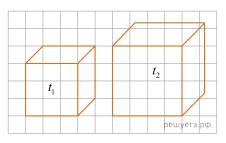
9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на приращение внутренней энергии газа:

1)
$$1 \rightarrow 2$$
 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow 1$

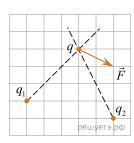

10. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом с относительной влажностью $\phi_1=30\%$. Если при изотермическом сжатии объём воздуха в сосуде уменьшится в три раза, то относительная влажность ϕ_2 воздуха будет равна:

11. Тело, которое падало без начальной скорости $(v_0 = 0 \, \frac{\mathrm{M}}{\mathrm{C}})$ с некоторой высоты, за последнюю секунду движения прошло путь s = 35 м. Высота h, с которой тело упало, равна ... м.

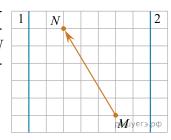
12. Игрок в кёрлинг сообщил плоскому камню начальную скорость \vec{v}_0 , после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu = 0,0093$. Если путь, пройденный камнем, s = 34 м, то модуль начальной скорости v_0 камня равен ... С



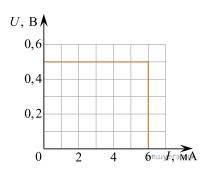
- 13. Однородный алюминиевый шар массой m = 27 г, подвешенный к динамометру, полностью погружен в жидкость. Если плотность вещества шара в k = 1,2 раза больше плотности жидкости, то динамометр показывает значение силы, равное? Ответ приведите в миллиньютонах.
- 14. На гладкой горизонтальной поверхности лежит брусок массой $m_1=52$ г, прикрепленный к стене невесомой пружиной жесткостью m_2 \overline{v} $k=52~\frac{{
 m H}}{{
 m M}}$ (см.рис.). Пластилиновый шарик массой $m_2=78~{
 m \Gamma},$ летящий го-

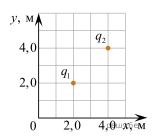


ризонтально вдоль оси пружины со скоростью, модуль которой $\upsilon=2,0$ $\frac{{}^{\rm M}}{c},$ попадает в брусок и прилипает к нему. Максимальное сжатие пружины $|\Delta l|$ равно ... мм.


- **15.** Идеальный одноатомный газ, начальный объем которого $V_1 = 8 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 8 \cdot 10^5~\Pi$ а. Газ охлаждают сначала изобарно, а затем продолжают охлаждение при постоянном объеме до давления $p_2 = 4 \cdot 10^5$ Па. Если при переходе из начального состояния в конечное газ отдает количество теплоты $Q = 9 \,\mathrm{MДж}$, то его объем V_2 в конечном состоянии равен ... м³.
- 16. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 1.0$ °C, а второго — $t_2 = 92$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °С.

- **17.** Идеальный одноатомный газ $(M=4,0 \frac{\Gamma}{\text{МОЛЬ}})$, массой m=24,0 г, при изобарном нагревании получил количество теплоты Q = 9,0 кДж. Если при этом объем газа увеличился в k = 1,2 раза, то начальная температура газа t_1 равна ... ${}^{\mathbf{o}}\mathbf{C}$.
- **18.** На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1=17$ нКл, то модуль заряда q_2 равен ...нКл.


19. На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q=14 нКл из точки M в точку N электрическое поле конденсатора совершило работу A=390 нДж, то разность потенциалов $\phi_1-\phi_2$ между обкладками равна ... В.


20. Тонкое проволочное кольцо радиусом r=2,0 см и массой m=98,6 мг, изготовленное из проводника сопротивлением R=40 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x=kx$, где k=10 Тл/м, x — координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0=10$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.

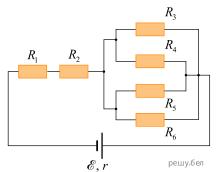
21. В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0 = 20~\mathrm{B}$, а амплитудное значение силы тока в контуре $I_0 = 25~\mathrm{mA}$. Если электроёмкость конденсатора $C = 5,0~\mathrm{mk\Phi}$, то период T колебаний в контуре равен ... **мс**.

22. В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=400$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от $R_{\min}=0$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.

24. Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.

25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

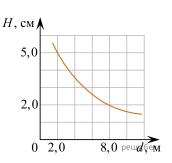

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого $r=0,50~{\rm Om},$ и резистора сопротивлением $R=10~{\rm Om}.$ Если сила тока в цепи $I=2,0~{\rm A},$ то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

